Ideal Midline Detection Using Automated Processing of Brain CT Image
نویسندگان
چکیده
Brain ideal midline estimation is vital in medical image processing, especially in analyzing the severity of a brain injury in clinical environments. We propose an automated computer-aided ideal midline estimation system with a two-step process. First, a CT Slice Selection Algorithm (SSA) can automatically select an appropriate subset of slices from a large number of raw CT images using the skull’s anatomical features. Next, an ideal midline detection is implemented on the selected subset of slices. An exhaustive symmetric position search is performed based on the anatomical features in the detection. In order to enhance the accuracy of the detection, a global rotation assumption is applied to determine the ideal midline by fully considering the connection between slices. Experimental results of the multi-stage algorithm were assessed on 3313 CT slices of 70 patients. The accuracy of the proposed system is 96.9%, which makes it viable for use under clinical settings.
منابع مشابه
Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching
BACKGROUND Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The s...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملAutomatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...
متن کاملA Simple, Fast and Fully Automated Approach for Midline Shift Measurement on Brain Computed Tomography
Brain CT has become a standard imaging tool for emergent evaluation of brain condition, and measurement of midline shift (MLS) is one of the most important features to address for brain CT assessment. We present a simple method to estimate MLS and propose a new alternative parameter to MLS: the ratio of MLS over the maximal width of intracranial region (MLS/ICWMAX). Three neurosurgeons and our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013